Przejdź do menu Przejdź do treści
English version   |   Wygląd Wygląd   |   Zaloguj się
English version   |   Wygląd Wygląd   |   Zaloguj się
Rozmiar czcionki:
Zwiększ rozmiar czcionki
Standardowy rozmiar czcionki
Zmniejsz rozmiar czcionki
Wysoki kontrast:
Włącz tryb biały na czarnym
Włącz tryb żółty na niebieskim
Opcje widoku:
Przełącz na widok szeroki

Menu

Strona główna
  • Strona główna
  • Katalog
    • Wyszukiwanie proste [ALT+1]
    • Wyszukiwanie zaawansowane [ALT+2]
    • Przeglądanie [ALT+3]
  • Rejestracja

Dane szczegółowe książki

Discovering statistics using SPSS: and sex and drugs and rock 'n' roll / Field, Andy
  • Opis bibliograficzny Opis
Autorzy
Field, Andy
Tytuł
Discovering statistics using SPSS: and sex and drugs and rock 'n' roll
Tytuł oryginału
Discovering statistics using SPSS : and sex and drugs and rock 'n' roll
Wydawnictwo
Los Angeles-London-New Delhi-Singapore-Washington DC: Sage Publications, 2011
Numer wydania
3
ISBN
9781847879066; 9781847879073
Hasła przedmiotowe
SPSS
Statystyka -- oprogramowanie
Podręczniki akademickie

Spis treści

pokaż spis treści
Preface … xix
How to use this book … xxiv
Acknowledgements … xxviii
Dedication … xxx
Symbols used in this book … xxxi
Some maths revision … xxxiii
1. Why is my evil lecturer forcing me to learn statistics? 1
1.1. What will this chapter tell me? (1) … 1
1.2. What the hell am I doing here? I don't belong here (1) … 2
1.2.1. The research process (1) … 3
1.3. Initial observation: finding something that needs explaining (1) … 3
1.4. Generating theories and testing them (1) … 4
1.5. Data collection 1: what to measure (1) … 7
1.5.1. Variables (1) … 7
1.5.2. Measurement error (1) … 10
1.5.3. Validity and reliability (1) … 11
1.6. Data collection 2: how to measure (1) … 12
1.6.1. Correlational research methods (1) … 12
1.6.2. Experimental research methods (1) … 13
1.6.3. Randomization (1) … 17
1.7. Analyzing data (1) … 18
1.7.1. Frequency distributions (1) … 18
1.7.2. The centre of a distribution (1) … 20
1.7.3. The dispersion in a distribution (1) … 23
1.7.4. Using a frequency distribution to go beyond the data (1) … 24
1.7.5. Fitting statistical models to the data (1) … 26
What have I discovered about statistics? (1) … 28
Key terms that I've discovered … 28
Smart Alex's stats quiz … 29
Further reading … 29
Interesting real research … 30
2. Everything you ever wanted to know about statistics (well, sort of) … 31
2.1. What will this chapter tell me? (1) … 31
2.2. Building statistical models (1) … 32
2.3. Populations and samples (1) … 34
2.4. Simple statistical models (1) … 35
2.4.1. The mean: a very simple statistical model (1) … 35
2.4.2. Assessing the fit of the mean: sums of squares, variance and standard deviations (1) … 35
2.4.3. Expressing the mean as a model (2) … 38
2.5. Going beyond the data (1) … 40
2.5.1. The standard error (1) … 40
2.5.2. Confidence intervals (2) … 43
2.6. Using statistical models to test research questions (1) … 48
2.6.1. Test statistics (1) … 52
2.6.2. One- and two-tailed tests (1) … 54
2.6.3. Type I and Type II errors (1) … 55
2.6.4. Effect sizes (2) … 56
2.6.5. Statistical power (2) … 58
What have I discovered about statistics? (1) … 59
Key terms that I've discovered … 59
Smart Alex's stats quiz … 59
Further reading … 60
Interesting real research … 60
3. The SPSS environment … 61
3.1. What will this chapter tell me? (1) … 61
3.2. Versions of SPSS (1) … 62
3.3. Getting started (1) … 62
3.4. The data editor (1) … 63
3.4.1. Entering data into the data editor (1) … 69
3.4.2. The 'Variable View' (1) … 70
3.4.3. Missing values (1) … 77
3.5. The SPSS viewer (1) … 78
3.6. The SPSS SmartViewer (1) … 81
3.7. The syntax window (3) … 82
3.8.saving files (1) … 83
3.9. Retrieving a file (1) … 84
What have I discovered about statistics? (1) … 85
Key terms that I've discovered … 85
Smart Alex's tasks … 85
Further reading … 86
Online tutorials … 86
4. Exploring data with graphs … 87
4.1. What will this chapter tell me? (1) … 87
4.2. The art of presenting data (1) … 88
4.2.1. What makes a good graph? (1) … 88
4.2.2. Lies, damned lies, and … erm … graphs (1) … 90
4.3. The SPSS Chart Builder (1) … 91
4.4. Histograms: a good way to spot obvious problems (1) … 93
4.5. Boxplots (box-whisker diagrams) (1) … 99
4.6. Graphing means: bar charts and error bars (1) … 103
4.6.1. Simple bar charts for independent means (1) … 105
4.6.2. Clustered bar charts for independent means (1) … 107
4.6.3. Simple bar charts for related means (1) … 109
4.6.4. Clustered bar charts for related means (1) … 111
4.6.5. Clustered bar charts for 'mixed' designs (1) … 113
4.7. Line charts (1) … 115
4.8. Graphing relationships: the scatterplot (1) … 116
4.8.1. Simple scatterplot (1) … 117
4.8.2. Grouped scatterplot (1) … 119
4.8.3. Simple and grouped 3-D scatterplots (1) … 121
4.8.4. Matrix scatterplot (1) … 123
4.8.5. Simple dot plot or density plot (1) … 125
4.8.6. Drop-line graph (1) … 126
4.9. Editing graphs (1) … 126
What have I discovered about statistics? (1) … 129
Key terms that I've discovered … 130
Smart Alex's tasks … 130
Further reading … 130
Online tutorial … 130
Interesting real research … 130
5. Exploring assumptions … 131
5.1. What will this chapter tell me? (1) … 131
5.2. What are assumptions? (1) … 132
5.3. Assumptions of parametric data (1) … 132
5.4. The assumption of normality (1) … 133
5.4.1. Oh no, it's that pesky frequency distribution again: checking normality visually (1) … 134
5.4.2. Quantifying normality with numbers (1) … 136
5.4.3. Exploring groups of data (1) … 140
5.5. Testing whether a distribution is normal (1) … 144
5.5.1. Doing the Kolmogorov-Smirnov test on SPSS (1) … 145
5.5.2. Output from the explore procedure (1) … 146
5.5.3. Reporting the K-S test (1) … 148
5.6. Testing for homogeneity of variance (1) … 149
5.6.1. Levene's test (1) … 150
5.6.2. Reporting Levene's test (1) … 152
5.7. Correcting problems in the data (2) … 153
5.7.1. Dealing with outliers (2) … 153
5.7.2. Dealing with non-normality and unequal variances (2) … 153
5.7.3. Transforming the data using SPSS (2) … 156
5.7.4. When it all goes horribly wrong (3) … 162
What have I discovered about statistics? (1) … 164
Key terms that I've discovered … 164
Smart Alex's tasks … 165
Online tutorial … 165
Further reading … 165
6. Correlation … 166
6.1. What will this chapter tell me? (1) … 166
6.2. Looking at relationships (1) … 167
6.3. How do we measure relationships? (1) … 167
6.3.1. A detour into the murky world of covariance (1) … 167
6.3.2. Standardization and the correlation coefficient (1) … 169
6.3.3. The significance of the correlation coefficient (3) … 171
6.3.4. Confidence intervals for r (3) … 172
6.3.5. A word of warning about interpretation: causality (1) … 173
6.4. Data entry for correlation analysis using SPSS (1) … 174
6.5. Bivariate correlation (1) … 175
6.5.1. General procedure for running correlations on SPSS (1) … 175
6.5.2. Pearson's correlation coefficient (1) … 177
6.5.3. Spearman's correlation coefficient (1) … 179
6.5.4. Kendall's tau (non-parametric) (1) … 181
6.5.5. Biserial and point-biserial correlations (3) … 182
6.6. Partial correlation (2) … 186
6.6.1. The theory behind part and partial correlation (2) … 186
6.6.2. Partial correlation using SPSS (2) … 188
6.6.3. Semi-partial (or part) correlations (2) … 190
6.7. Comparing correlations (3) … 191
6.7.1. Comparing independent rs (3) … 191
6.7.2. Comparing dependent rs (3) … 191
6.8. Calculating the effect size (1) … 192
6.9. How to report correlation coefficents (1) … 193
What have I discovered about statistics? (1) … 195
Key terms that I've discovered … 195
Smart Alex's tasks … 195
Further reading … 196
Online tutorial … 196
Interesting real research … 196
7. Regression 197
7.1. What will this chapter tell me? (1) … 197
7.2. An introduction to regression (1) … 198
7.2.1. Some important information about straight lines (1) … 199
7.2.2. The method of least squares (1) … 200
7.2.3. Assessing the goodness of fit: sums of squares, R and R^{2} (1) … 201
7.2.4. Assessing individual predictors (1) … 204
7.3. Doing simple regression on SPSS (1) … 205
7.4. Interpreting a simple regression (1) … 206
7.4.1. Overall fit of the model (1) … 206
7.4.2. Model parameters (1) … 207
7.4.3. Using the model (1) … 208
7.5. Multiple regression: the basics (2) … 209
7.5.1. An example of a multiple regression model (2) … 210
7.5.2. Sums of squares, R and R^{2} (2) … 211
7.5.3. Methods of regression (2) … 212
7.6. How accurate is my regression model? (2) … 214
7.6.1. Assessing the regression model I: diagnostics (2) … 214
7.6.2. Assessing the regression model II: generalization (2) … 220
7.7. How to do multiple regression using SPSS (2) … 225
7.7.1. Some things to think about before the analysis (2) … 225
7.7.2. Main options (2) … 225
7.7.3. Statistics (2) … 227
7.7.4. Regression plots (2) … 229
7.7.5.saving regression diagnostics (2) … 230
7.7.6. Further options (2) … 231
7.8. Interpreting multiple regression (2) … 233
7.8.1. Descriptives (2) … 233
7.8.2. Summary of model (2) … 234
7.8.3. Model parameters (2) … 237
7.8.4. Excluded variables (2) … 241
7.8.5. Assessing the assumption of no multicollinearity (2) … 241
7.8.6. Casewise diagnostics (2) … 244
7.8.7. Checking assumptions (2) … 247
7.9. What if I violate an assumption? (2) … 251
7.10. How to report multiple regression (2) … 252
7.11. Categorical predictors and multiple regression (3) … 253
7.11.1. Dummy coding (3) … 253
7.11.2. SPSS output for dummy variables (3) … 256
What have I discovered about statistics? (1) … 261
Key terms that I've discovered … 261
Smart Alex's tasks … 262
Further reading … 263
Online tutorial … 263
Interesting real research … 263
8. Logistic regression … 264
8.1. What will this chapter tell me? (1) … 264
8.2. Background to logistic regression (1) … 265
8.3. What are the principles behind logistic regression? (3) … 265
8.3.1. Assessing the model: the log-likelihood statistic (3) … 267
8.3.2. Assessing the model: ft and R^{2} (3) … 268
8.3.3. Assessing the contribution of predictors: the Wald statistic (2) … 269
8.3.4. The odds ratio: Exp(B) (3) … 270
8.3.5. Methods of logistic regression (2) … 271
8.4. Assumptions and things that can go wrong (4) … 273
8.4.1. Assumptions (2) … 273
8.4.2. Incomplete information from the predictors (4) … 273
8.4.3. Complete separation (4) … 274
8.4.4. Overdispersion (4) … 276
8.5. Binary logistic regression: an example that will make you feel eel (2) … 277
8.5.1. The main analysis (2) … 278
8.5.2. Method of regression (2) … 279
8.5.3. Categorical predictors (2) … 279
8.5.4. Obtaining residuals (2) … 280
8.5.5. Further options (2) … 281
8.6. Interpreting logistic regression (2) … 282
8.6.1. The initial model (2) … 282
8.6.2. Step 1: intervention (3) … 284
8.6.3. Listing predicted probabilities (2) … 291
8.6.4. Interpreting residuals (2) … 292
8.6.5. Calculating the effect size (2) … 294
8.7. How to report logistic regression (2) … 294
8.8. Testing assumptions: another example (2) … 294
8.8.1. Testing for linearity of the logit (3) … 296
8.8.2. Testing for multicollinearity (3) … 297
8.9. Predicting several categories: multinomial logistic regression (3) … 300
8.9.1. Running multinomial logistic regression in SPSS (3) … 301
8.9.2. Statistics (3) … 304
8.9.3. Other options (3) … 305
8.9.4. Interpreting the multinomial logistic regression output (3) … 306
8.9.5. Reporting the results … 312
What have I discovered about statistics? (1) … 313
Key terms that I've discovered … 313
Smart Alex's tasks … 313
Further reading … 315
Online tutorial … 315
Interesting real research … 315
9. Comparing two means … 316
9.1. What will this chapter tell me? (1) … 316
9.2. Looking at differences (1) … 317
9.2.1. A problem with error bar graphs of repeated-measures designs (1) … 317
9.2.2. Step 1: calculate the mean for each participant (2) … 320
9.2.3. Step 2: calculate the grand mean (2) … 320
9.2.4. Step 3: calculate the adjustment factor (2) … 322
9.2.5. Step 4: create adjusted values for each variable (2) … 323
9.3. The t-test (1) … 324
9.3.1. Rationale for the t-test (1) … 325
9.3.2. Assumptions of the t-test (1) … 326
9.4. The dependent t-test (1) … 326
9.4.1. Sampling distributions and the standard error (1) … 327
9.4.2. The dependent t-test equation explained (1) … 327
9.4.3. The dependent t-test and the assumption of normality (1) … 329
9.4.4. Dependent t-tests using SPSS (1) … 329
9.4.5. Output from the dependent t-test (1) … 330
9.4.6. Calculating the effect size (2) … 332
9.4.7. Reporting the dependent t-test (1) … 333
9.5. The independent t-test (1) … 334
9.5.1. The independent t-test equation explained (1) … 334
9.5.2. The independent t-test using SPSS (1) … 337
9.5.3. Output from the independent t-test (1) … 339
9.5.4. Calculating the effect size (2) … 341
9.5.5. Reporting the independent t-test (1) … 341
9.6. Between groups or repeated measures? (1) … 342
9.7. The t-test as a general linear model (2) … 342
9.8. What if my data are not normally distributed? (2) … 344
What have I discovered about statistics? (1) … 345
Key terms that I've discovered … 345
Smart Alex's task … 346
Further reading … 346
Online tutorial … 346
Interesting real research … 346
10. Comparing several means: ANOVA (GLM 1) … 347
10.1. What will this chapter tell me? (1) … 347
10.2. The theory behind ANOVA (2) … 348
10.2.1. Inflated error rates (2) … 348
10.2.2. Interpreting F (2) … 349
10.2.3. ANOVA as regression (2) … 349
10.2.4. Logic of the F-ratio (2) … 354
10.2.5. Total sum of squares (SS_{T}) (2) … 356
10.2.6. Model sum of squares (SS_{M}) (2) … 356
10.2.7. Residual sum of squares (SS_{R}) (2) … 357
10.2.8. Mean squares (2) … 358
10.2.9. The F-ratio (2) … 358
10.2.10. Assumptions of ANOVA (3) … 359
10.2.11. Planned contrasts (2) … 360
10.2.12. Post hoc procedures (2) … 372
10.3. Running one-way ANOVA on SPSS (2) … 375
10.3.1. Planned comparisons using SPSS (2) … 376
10.3.2. Post hoc tests in SPSS (2) … 378
10.3.3. Options (2) … 379
10.4. Output from one-way ANOVA (2) … 381
10.4.1. Output for the main analysis (2) … 381
10.4.2. Output for planned comparisons (2) … 384
10.4.3. Output for post hoc tests (2) … 385
10.5. Calculating the effect size (2) … 389
10.6. Reporting results from one-way independent ANOVA (2) … 390
10.7. Violations of assumptions in one-way independent ANOVA (2) … 391
What have I discovered about statistics? (1) … 392
Key terms that I've discovered … 392
Smart Alex's tasks … 393
Further reading … 394
Online tutorials … 394
Interesting real research … 394
11. Analysis of covariance, ANC0VA (GLM 2) … 395
11.1. What will this chapter tell me? (2) … 395
11.2. What is ANCOVA? (2) … 396
11.3. Assumptions and issues in ANCOVA (3) … 397
11.3.1. Independence of the covariate and treatment effect (3) … 397
11.3.2. Homogeneity of regression slopes (3) … 399
11.4. Conducting ANCOVA on SPSS (2) … 399
11.4.1. Inputting data (1) … 399
11.4.2. Initial considerations: testing the independence of the independent variable and covariate (2) … 400
11.4.3. The main analysis (2) … 401
11.4.4. Contrasts and other options (2) … 401
11.5. Interpreting the output from ANCOVA (2) … 404
11.5.1. What happens when the covariate is excluded? (2) … 404
11.5.2. The main analysis (2) … 405
11.5.3. Contrasts (2) … 407
11.5.4. Interpreting the covariate (2) … 408
11.6. ANCOVA run as a multiple regression (2) … 408
11.7. Testing the assumption of homogeneity of regression slopes (3) … 413
11.8. Calculating the effect size (2) … 415
11.9. Reporting results (2) … 417
11.10. What to do when assumptions are violated in ANCOVA (3) … 418
What have I discovered about statistics? (2) … 418
Key terms that I've discovered … 419
Smart Alex's tasks … 419
Further reading … 420
Online tutorials … 420
Interesting real research … 420
12. Factorial ANOVA (GLM 3) … 421
12.1. What will this chapter tell me? (2) … 421
12.2. Theory of factorial ANOVA (between-groups) (2) … 422
12.2.1. Factorial designs (2) … 422
12.2.2. An example with two independent variables (2) … 423
12.2.3. Total sums of squares (SS_{T}) (2) … 424
12.2.4. The model sum of squares (SS_{M}) (2) … 426
12.2.5. The residual sum of squares (SS_{R}) (2) … 428
12.2.6. The F-ratios (2) … 429
12.3. Factorial ANOVA using SPSS (2) … 430
12.3.1. Entering the data and accessing the main dialog box (2) … 430
12.3.2. Graphing interactions (2) … 432
12.3.3. Contrasts (2) … 432
12.3.4. Post hoc tests (2) … 434
12.3.5. Options (2) … 434
12.4. Output from factorial ANOVA (2) … 435
12.4.1. Output for the preliminary analysis (2) … 435
12.4.2. Levene's test (2) … 436
12.4.3. The main ANOVA table (2) … 436
12.4.4. Contrasts (2) … 439
12.4.5. Simple effects analysis (3) … 440
12.4.6. Post hoc analysis (2) … 441
12.5. Interpreting interaction graphs (2) … 443
12.6. Calculating effect sizes (3) … 446
12.7. Reporting the results of two-way ANOVA (2) … 448
12.8. Factorial ANOVA as regression (3) … 450
12.9. What to do when assumptions are violated in factorial ANOVA (3) … 454
What have I discovered about statistics? (2) … 454
Key terms that I've discovered … 455
Smart Alex's tasks … 455
Further reading … 456
Online tutorials … 456
Interesting real research … 456
13. Repeated-measures designs (GLM 4) … 457
13.1. What will this chapter tell me? (2) … 457
13.2. Introduction to repeated-measures designs (2) … 458
13.2.1. The assumption of sphericity (2) … 459
13.2.2. How is sphericity measured? (2) … 459
13.2.3. Assessing the severity of departures from sphericity (2) … 460
13.2.4. What is the effect of violating the assumption of sphericity? (3) … 460
13.2.5. What do you do if you violate sphericity? (2) … 461
13.3. Theory of one-way repeated-measures ANOVA (2) … 462
13.3.1. The total sum of squares (SS_{T}) (2) … 464
13.3.2. The within-participant (SS_{W}) (2) … 465
13.3.3. The model sum of squares (SS_{M}) (2) … 466
13.3.4. The residual sum of squares (SS_{R}) (2) … 467
13.3.5. The mean squares (2) … 467
13.3.6. The F-ratio (2) … 467
13.3.7. The between-participant sum of squares (2) … 468
13.4. One-way repeated-measures ANOVA using SPSS (2) … 468
13.4.1. The main analysis (2) … 468
13.4.2. Defining contrasts for repeated-measures (2) … 471
13.4.3. Post hoc tests and additional options (3) … 471
13.5. Output for one-way repeated-measures ANOVA (2) … 474
13.5.1. Descriptives and other diagnostics (1) … 474
13.5.2. Assessing and correcting for sphericity: Mauchly's test (2) … 474
13.5.3. The main ANOVA (2) … 475
13.5.4. Contrasts (2) … 477
13.5.5. Post hoc tests (2) … 478
13.6. Effect sizes for repeated-measures ANOVA (3) … 479
13.7. Reporting one-way repeated-measures ANOVA (2) … 481
13.8. Repeated-measures with several independent variables (2) … 482
13.8.1. The main analysis (2) … 484
13.8.2. Contrasts (2) … 488
13.8.3. Simple effects analysis (3) … 488
13.8.4. Graphing interactions (2) … 490
13.8.5. Other options (2) … 491
13.9. Output for factorial repeated-measures ANOVA (2) … 492
13.9.1. Descriptives and main analysis (2) … 492
13.9.2. The effect of drink (2) … 493
13.9.3. The effect of imagery (2) … 495
13.9.4. The interaction effect (drink times imagery) (2) … 496
13.9.5. Contrasts for repeated-measures variables (2) … 498
13.10. Effect sizes for factorial repeated-measures ANOVA (3) … 501
13.11. Reporting the results from factorial repeated-measures ANOVA (2) … 502
13.12. What to do when assumptions are violated in repeated-measures ANOVA (3) … 503
What have I discovered about statistics? (2) … 503
Key terms that I've discovered … 504
Smart Alex's tasks … 504
Further reading … 505
Online tutorials … 505
Interesting real research … 505
14. Mixed design ANOVA (GLM 5) … 506
14.1. What will this chapter tell me? (1) … 506
14.2. Mixed designs (2) … 507
14.3. What do men and women look for in a partner? (2) … 508
14.4. Mixed ANOVA on SPSS (2) … 508
14.4.1. The main analysis (2) … 508
14.4.2. Other options (2) … 513
14.5. Output for mixed factorial ANOVA: main analysis (3) … 514
14.5.1. The main effect of gender (2) … 517
14.5.2. The main effect of looks (2) … 518
14.5.3. The main effect of charisma (2) … 520
14.5.4. The interaction between gender and looks (2) … 521
14.5.5. The interaction between gender and charisma (2) … 523
14.5.6. The interaction between attractiveness and charisma (2) … 524
14.5.7. The interaction between looks, charisma and gender (3) … 527
14.5.8. Conclusions (3) … 530
14.6. Calculating effect sizes (3) … 531
14.7. Reporting the results of mixed ANOVA (2) … 533
14.8. What to do when assumptions are violated in mixed ANOVA (3) … 536
What have I discovered about statistics? (2) … 536
Key terms that I've discovered … 537
Smart Alex's tasks … 537
Further reading … 538
Online tutorials … 538
Interesting real research … 538
15. Non-parametric tests 539
15.1. What will this chapter tell me? (1) … 539
15.2. When to use non-parametric tests (1) … 540
15.3. Comparing two independent conditions: the Wilcoxon rank-sum test and Mann-Whitney test (1) … 540
15.3.1. Theory (2) … 542
15.3.2. Inputting data and provisional analysis (1) … 545
15.3.3. Running the analysis (1) … 546
15.3.4. Output from the Mann-Whitney test (1) … 548
15.3.5. Calculating an effect size (2) … 550
15.3.6. Writing the results (1) … 550
15.4. Comparing two related conditions: the Wilcoxon signed-rank test (1) … 552
15.4.1. Theory of the Wilcoxon signed-rank test (2) … 552
15.4.2. Running the analysis (1) … 554
15.4.3. Output for the ecstasy group (1) … 556
15.4.4. Output for the alcohol group (1) … 557
15.4.5. Calculating an effect size (2) … 558
15.4.6. Writing the results (2) … 558
15.5. Differences between several independent groups: the Kruskal-Wallis test (1) … 559
15.5.1. Theory of the Kruskal-Wallis test (2) … 560
15.5.2. Inputting data and provisional analysis (1) … 562
15.5.3. Doing the Kruskal-Wallis test on SPSS (1) … 562
15.5.4. Output from the Kruskal-Wallis test (1) … 564
15.5.5. Post hoc tests for the Kruskal-Wallis test (2) … 565
15.5.6. Testing for trends: the Jonckheere-Terpstra test (2) … 568
15.5.7. Calculating an effect size (2) … 570
15.5.8. Writing and interpreting the results (1) … 571
15.6. Differences between several related groups: Friedman's ANOVA (1) … 573
15.6.1. Theory of Friedman's ANOVA (2) … 573
15.6.2. Inputting data and provisional analysis (1) … 575
15.6.3. Doing Friedman's ANOVA on SPSS (1) … 575
15.6.4. Output from Friedman's ANOVA (1) … 576
15.6.5. Post hoc tests for Friedman's ANOVA (2) … 577
15.6.6. Calculating an effect size (2) … 579
15.6.7. Writing and interpreting the results (1) … 580
What have I discovered about statistics? (1) … 581
Key terms that I've discovered … 582
Smart Alex's tasks … 582
Further reading … 583
Online tutorial … 583
Interesting real research … 583
16. Multivariate analysis of variance (MANOVA) … 584
16.1. What will this chapter tell me? (2) … 584
16.2. When to use MANOVA (2) … 585
16.3. Introduction: similarities and differences to ANOVA (2) … 585
16.3.1. Words of warning (2) … 587
16.3.2. The example for this chapter (2) … 587
16.4. Theory of MANOVA (3) … 588
16.4.1. Introduction to matrices (3) … 588
16.4.2. Some important matrices and their functions (3) … 590
16.4.3. Calculating MANOVA by hand: a worked example (3) … 591
16.4.4. Principle of the MANOVA test statistic (4) … 598
16.5. Practical issues when conducting MANOVA (3) … 603
16.5.1. Assumptions and how to check them (3) … 603
16.5.2. Choosing a test statistic (3) … 604
16.5.3. Follow-up analysis (3) … 605
16.6. MANOVA on SPSS (2) … 605
16.6.1. The main analysis (2) … 606
16.6.2. Multiple comparisons in MANOVA (2) … 607
16.6.3. Additional options (3) … 607
16.7. Output from MANOVA (3) … 608
16.7.1. Preliminary analysis and testing assumptions (3) … 608
16.7.2. MANOVA test statistics (3) … 608
16.7.3. Univariate test statistics (2) … 609
16.7.4. SSCP Matrices (3) … 611
16.7.5. Contrast (3) … 613
16.8. Reporting results from MANOVA (2) … 614
16.9. Following up MANOVA with discriminant analysis (3) … 615
16.10. Output from the discriminant analysis (4) … 618
16.11. Reporting results from discriminant analysis (2) … 621
16.12. Some final remarks (4) … 622
16.12.1. The final interpretation (4) … 622
16.12.2. Univariate ANOVA or discriminant analysis? … 624
16.13. What to do when assumptions are violated in MANOVA (3) … 624
What have I discovered about statistics? (2) … 624
Key terms that I've discovered … 625
Smart Alex's tasks … 625
Further reading … 626
Online tutorials … 626
Interesting real research … 626
17. Exploratory factor analysis … 627
17.1. What will this chapter tell me? (1) … 627
17.2. When to use factor analysis (2) … 628
17.3. Factors (2) … 628
17.3.1. Graphical representation of factors (2) … 630
17.3.2. Mathematical representation of factors (2) … 631
17.3.3. Factor scores (2) … 633
17.4. Discovering factors (2) … 636
17.4.1. Choosing a method (2) … 636
17.4.2. Communality (2) … 637
17.4.3. Factor analysis vs. principal component analysis (2) … 638
17.4.4. Theory behind principal component analysis (3) … 638
17.4.5. Factor extraction: eigenvalues and the scree plot (2) … 639
17.4.6. Improving interpretation: factor rotation (3) … 642
17.5. Research example (2) … 645
17.5.1. Before you begin (2) … 645
17.6. Running the analysis (2) … 650
17.6.1. Factor extraction on SPSS (2) … 651
17.6.2. Rotation (2) … 653
17.6.3. Scores (2) … 654
17.6.4. Options (2) … 654
17.7. Interpreting output from SPSS (2) … 655
17.7.1. Preliminary analysis (2) … 656
17.7.2. Factor extraction (2) … 660
17.7.3. Factor rotation (2) … 664
17.7.4. Factor scores (2) … 669
17.7.5. Summary (2) … 671
17.8. How to report factor analysis (1) … 671
17.9. Reliability analysis (2) … 673
17.9.1. Measures of reliability (3) … 673
17.9.2. Interpreting Cronbach's alpha (some cautionary tales …) (2) … 675
17.9.3. Reliability analysis on SPSS (2) … 676
17.9.4. Interpreting the output (2) … 678
17.10. How to report reliability analysis (2) … 681
What have I discovered about statistics? (2) … 682
Key terms that I've discovered … 682
Smart Alex's tasks … 683
Further reading … 685
Online tutorial … 685
Interesting real research … 685
18. Categorical data … 686
18.1. What will this chapter tell me? (1) … 686
18.2. Analysing categorical data (1) … 687
18.3. Theory of analysing categorical data (1) … 687
18.3.1. Pearson's chi-square test (1) … 688
18.3.2. Fisher's exact test (1) … 690
18.3.3. The likelihood ratio (2) … 690
18.3.4. Yates' correction (2) … 691
18.4. Assumptions of the chi-square test (1) … 691
18.5. Doing chi-square on SPSS (1) … 692
18.5.1. Entering data: raw scores (1) … 692
18.5.2. Entering data: weight cases (1) … 692
18.5.3. Running the analysis (1) … 694
18.5.4. Output for the chi-square test (1) … 696
18.5.5. Breaking down a significant chi-square test with standardized residuals (2) … 698
18.5.6. Calculating an effect size (2) … 699
18.5.7. Reporting the results of chi-square (1) … 700
18.6. Several categorical variables: loglinear analysis (3) … 702
18.6.1. Chi-square as regression (4) … 702
18.6.2. Loglinear analysis (3) … 708
18.7. Assumptions in loglinear analysis (2) … 710
18.8. Loglinear analysis using SPSS (2) … 711
18.8.1. Initial considerations (2) … 711
18.8.2. The loglinear analysis (2) … 712
18.9. Output from loglinear analysis (3) … 714
18.10. Following up loglinear analysis (2) … 719
18.11. Effect sizes in loglinear analysis (2) … 720
18.12. Reporting the results of loglinear analysis (2) … 721
What have I discovered about statistics? (1) … 722
Key terms that I've discovered … 722
Smart Alex's tasks … 722
Further reading … 724
Online tutorial … 724
Interesting real research … 724
19. Multilevel linear models … 725
19.1. What will this chapter tell me? (1) … 725
19.2. Hierarchical data (2) … 726
19.2.1. The intraclass correlation (2) … 728
19.2.2. Benefits of multilevel models (2) … 729
19.3. Theory of multilevel linear models (3) … 730
19.3.1. An example (2) … 730
19.3.2. Fixed and random coefficients (3) … 732
19.4. The multilevel model (4) … 734
19.4.1. Assessing the fit and comparing multilevel models (4) … 737
19.4.2. Types of covariance structures (4) … 737
19.5. Some practical issues (3) … 739
19.5.1. Assumptions (3) … 739
19.5.2. Sample size and power (3) … 740
19.5.3. Centring variables (4) … 740
19.6. Multilevel modelling on SPSS (4) … 741
19.6.1. Entering the data (2) … 742
19.6.2. Ignoring the data structure: ANOVA (2) … 742
19.6.3. Ignoring the data structure: ANCOVA (2) … 746
19.6.4. Factoring in the data structure: random intercepts (3) … 749
19.6.5. Factoring in the data structure: random intercepts and slopes (4) … 752
19.6.6. Adding an interaction to the model (4) … 756
19.7. Growth models (4) … 761
19.7.1. Growth curves (polynomials) (4) … 761
19.7.2. An example: the honeymoon period (2) … 761
19.7.3. Restructuring the data (3) … 763
19.7.4. Running a growth model on SPSS (4) … 767
19.7.5. Further analysis (4) … 774
19.8. How to report a multilevel model (3) … 775
What have I discovered about statistics? (2) … 776
Key terms that I've discovered … 777
Smart Alex's tasks … 777
Further reading … 778
Online tutorial … 778
Interesting real research … 778
Epilogue … 779
Glossary … 781
Appendix … 797
A. 1. Table of the standard normal distribution … 797
A. 2. Critical values of the f-distribution … 803
A. 3. Critical values of the F-distribution … 804
A. 4. Critical values of the chi-square distribution … 808
References… 809
Index … 816

Zgłoś problem

Użyj poniższego formularza aby zgłosić ewentualne problemy z plikami udostępnianymi na tej stronie. Opisz dokładnie problem i wskaż czego on dotyczy.

Przejdź do listy książek
Centrum Wsparcia Dydaktyki
Biuro ds. Osób z Niepełnosprawnościami
ul. Dobra 55,
00-312 Warszawa
Pokój 0.070 Parter
tel. 22 55 24 222
fax. 22 55 20 224
email: bon@uw.edu.pl

Strona główna BON: www.bon.uw.edu.pl
  • Deklaracja Dostępności
  • O Akademickiej Bibliotece Cyfrowej
  • Regulamin Nowej ABC

Fundusze Europejskie Uniwersytet Warszawski Level UP Unia Europejska

Fundusze Europejskie Uniwersytet Warszawski

Level UP Unia Europejska

Nowa konwersja dostępna jest na Twojej półce

Wykonała się konwersja pliku, którą zleciłeś.

Przejdź na półkę Konwersje aby pobrać plik.

Nowa konwersja dostępna jest na Twojej półce

Wykonała się podgląd pliku, który zleciłeś.

Przejdź na półkę Zbiory przeglądane on-line aby skorzystać z czytnika on-line.